
 
 

COntent Mediator architecture  
for content-aware nETworks 

 
European Seventh Framework Project FP7-2010-ICT-248784-STREP 

 

Deliverable D4.3 

Prototype Implementation and System 
Integration Interfaces for Enhanced Network 

Platforms 

 
 
 
 
 
 
 
 
 
 

The COMET Consortium 

 
Telefónica Investigación y Desarrollo, TID, Spain 
University College London, UCL, United Kingdom 
University of Surrey, UniS, United Kingdom 
PrimeTel PLC, PRIMETEL, Cyprus 
Warsaw University of Technology, WUT, Poland 
Intracom SA Telecom Solutions, INTRACOM TELECOM, Greece 
 

© Copyright 2010, the Members of the COMET Consortium 
 
For more information on this document or the COMET project, please contact: 
 
Andrzej Bęben 
Warsaw University of Technology, abeben@tele.pw.edu.pl 

mailto:abeben@tele.pw.edu.pl


Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 2 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

 

Document Control 

 

Title: Prototype Implementation and System Integration Interfaces for Enhanced 
Network Platforms 

Type:  Public 

Editor(s): Andrzej Bęben 

E-mail: abeben@tele.pw.edu.pl 

Author(s): Andrzej Bęben, Piotr Wiśniewski, Jarosław Śliwiński (WUT), George Kamel 
(UniS), Lenos Andreou, Michael Georgiades (PrimeTel) 

 

 

Doc ID: d4.3_v1.1.doc 

 

AMENDMENT HISTORY 

 

Version Date Author Description/Comments 

v0.1 26/11/11 Andrzej Bęben, Jarosław Śliwiński First contribution about RAE  

v0.2 20/01/12 George Kamel Contribution about stateful CAFE  

V0.3 03/02/12 A.Beben, P.Wiśniewski Contribution about stateless CAFE 

V0.4 13/02/12 George Kamel Revised contribution about stateful CAFE with validation tests 

V0.5 13/02/12 P.Wiśniewski Revised contribution about RAE 

V0.6 16/02/12 George Petropoulos Review and comments 

V0.7 17/02/12 Lenos Andreou Contribution on CAFE validation 

V0.8 17/02/12 George Kamel Update of stateful CAFE description 

V0.9 20/02/12 Ioannis Psaras Review and comments 

V1.0 20/02/12 Andrzej Bęben Final version 

V1.1 20/02/12 David Flórez Final Version for submission 

 
 
 
Legal Notices 

The information in this document is subject to change without notice. 
The Members of the COMET Consortium make no warranty of any kind with regard to this document, 
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The 
Members of the COMET Consortium shall not be held liable for errors contained herein or direct, indirect, 
special, incidental or consequential damages in connection with the furnishing, performance, or use of this 
material. 

  



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 3 of 56 
© Copyright 2010, the Members of the COMET 

 

 

Table of Contents 

1 Executive Summary 5 

2 Introduction 6 

3 Network elements overview 7 

3.1 Interfaces 8 

3.2 Network elements deployment 9 

4 Routing Awareness Entity 10 

4.1 Description of functionality 10 

4.2 Interfaces 11 

4.2.1 Configuration file 11 

4.2.2 Inter-RAE interface 12 

4.2.3 RAE – CME interface 13 

4.3 Design 14 

4.4 Testing and Test scenarios 15 

4.4.1 Validation tests 15 

5 Stateless Content Aware Forwarding Entity 17 

5.1 Description of overall functionality 17 

5.2 Interfaces 19 

5.2.1 CAFE-CAFE 19 

5.2.2 CAFE-IP router or access network 19 

5.2.3 CME-CAFE management agent 20 

5.3 Design 20 

5.3.1 cafe_forward module 20 

5.3.2 cafe_intercept module 22 

5.3.3 configuration tools 23 

5.3.4 CAFE management agent 27 

5.4 Testing and test scenarios 28 

5.4.1 Validation tests 28 

5.4.2 Validation results 29 

6 Stateful Content Aware Forwarding 31 

6.1 Overall functionality 31 

6.2 Interfaces 32 

6.2.1 CAFE-CRME Interface 32 

6.2.2 CAFE-CAFE Interface 32 

6.3 Design 33 

6.3.1 Overall Content State Installation, Delivery and Route Optimisation 33 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 4 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

6.3.2 Class Diagram of Proof-of-concept Emulator 35 

6.3.3 CRME Design 36 

6.3.4 CAFE Design 38 

6.4 Testing and test scenarios 40 

6.4.1 Validation tests 40 

6.4.2 Validation results 42 

7 Summary 44 

8 References 45 

9 Abbreviations 46 

10 Acknowledgements 47 

11 Appendix A: Exemplary configuration file for RAE 48 

11.1 Overview 48 

11.2 Script example 48 

11.3 Prepare log4cxx.conf file 54 

11.4 Starting the RAE 55 

12 Appendix B: CAFE agent test script 56 

  



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 5 of 56 
© Copyright 2010, the Members of the COMET 

 

1 Executive Summary 

This deliverable focuses on the software design and implementation of entities developed for the 
Content Forwarding Plane (CFP) of the COMET system. In the COMET architecture [1], the CFP is 
responsible for content delivery from the content server to the content consumer. Moreover, the 
CFP gathers information about the network and provides it to the Content Mediation Plane (CMP) 
for enabling content and network mediation, and as a consequence, optimisation of content 
delivery. The basic entities of CFP are: Routing Awareness Entity (RAE) and Content Aware 
Forwarding Entity (CAFE). The software was developed following specification of RAE and CAFEs 
provided in COMET deliverable, D4.2 [2]. According to this specification, we implemented two 
versions of CAFE, called stateless and stateful, which are specially designed for the decoupled and 
the coupled approaches, respectively. The CFP entities will cooperate with other components of the 
COMET system. Implementation of other COMET components is provided in COMET deliverable 
D3.3 [3]. 

In chapter 2, we present the outline of implemented network entities and introduce their interfaces 
to other COMET system entities. We summarise exchanged messages and technologies used for 
each interface. Moreover, we present the deployment diagram related to network elements and 
briefly discuss how to deploy network entities in a single domain.  

Chapter 4 focuses on software design and implementation of the Routing Awareness Entity (RAE). 
Our implementation follows the specification of the RAE provided in COMET deliverable D4.2 [2]. 
We present details of designed interfaces between RAE and other COMET entities, UML class 
diagrams related to internal components of RAE as well as sequence diagrams corresponding to 
prefix advertisement, withdrawal, update of provisioning information and reset/unavailability of 
RAE. We also present validation test plan corresponding to RAE basic operations and stress tests 
aimed to validate capabilities of RAE in order to handle large number of prefixes. These test will be 
performed in the integration testbed.  

The software design and implementation of stateless CAFE is described in chapter 5. The stateless 
CAFE consists of two loadable Linux kernel modules, called cafe_forward and cafe_intercept and 
the set of configuration tools. The cafe_forward module forwards COMET packets containing 
content, while the cafe_intercept module is responsible for encapsulation of IP packets received at 
edge nodes into COMET packets. The configuration tools allow the CME entity to configure 
forwarding rules and packet interception filters on CAFE modules. In this chapter we present 
details of internal and external interfaces used by CAFE, the UML class diagrams related to 
developed modules showing internal components of particular module as well as message sequence 
diagrams explaining interactions between developed modules. Finally, we present results of basic 
tests that validate the developed software. 

Section 6 details the implementation of content delivery in the coupled approach within the proof-
of-concept emulator. The implementation is based upon the technical specifications given in 
COMET deliverable, D4.2 [1]. The main aspects covered in that section are state installation within 
CAFEs by CRMEs, the operation of content delivery, and the mechanism of route optimisation. 
While the focus of section 5 is on the CAFE which is the entity responsible for forwarding content, 
some related operations of the CRMEs are also detailed. We describe the operation of the CAFE 
and related content-forwarding-related CRME functionalities by means of UML state diagrams, 
and finally present our methodology to test our implementation. 

In this deliverable, we present only unitary/standalone tests of developed entities. As the next step, 
the CFP entities will be integrated with other COMET entities. The integration technologies and 
procedures used to develop, integrate and test the COMET software, as well as information about 
the system-wide validation tests and system releases, will be included in forthcoming deliverable 
“D5.1 – Integration of COMET Prototype and Adaptation of Applications”. 

 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 6 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

2 Introduction 

This deliverable focuses on the software design and implementation of entities developed for the 
Content Forwarding Plane (CFP) of the COMET system. In the COMET architecture [1], the CFP is 
responsible for content delivery from the content server to the content consumer. Moreover, the 
CFP gathers information about network and provides it to the Content Mediation Plane (CMP) for 
enabling content and network mediation, and as a consequence, optimisation of content delivery. 
The basic entities of CFP are: Routing Awareness Entity (RAE) and Content Aware Forwarding 
Entity (CAFE). The objective of RAE is to create and manage content delivery paths. The routing 
awareness is an off-line process performed in long time scale. It reacts to changes in inter-domain 
network reachability and re-provisioning of domains. The CAFEs are specialised network nodes 
responsible for forwarding content packets based on COMET specific forwarding method. 
According to specification in D4.2, we implemented two versions of CAFE, called stateless and 
stateful, which are specially designed for the decoupled and the coupled approaches, respectively. 
The stateless CAFE forwards packets based on information about content delivery path stored 
inside the COMET header. The COMET header is attached and removed by edge CAFEs located 
close to the content server and the client. The content delivery path is selected during content 
resolution process and then it is configured in the edge CAFE during the path configuration process 
[4]. On the other hand, the stateful CAFE forwards content packets based on the information 
configured during content resolution process. According to this approach specified in D3.2 [4], 
once the Content Resolution and Mediation Entity (CRME) has determined to forward the content 
resolution request to its counterpart in the next hop domain towards the targeted source, it is 
responsible for configuring the corresponding ingress and egress CAFEs in its local domain for 
preparing for the actual delivery of the content flow back to the consumer. The CFP entities will 
cooperate with other components of the COMET system. Implementation of other COMET 
components is documented in COMET deliverable D3.3 [3]. 

In this deliverable, we present details of developed entities, modules and components. For each 
entity, we present its internal and external interfaces with other COMET entities, UML class 
diagrams related to internal components as well as sequence diagrams related to basic operations 
and interactions between components. Moreover, we defined and performed unitary/standalone 
tests of each entity to validate functions of implemented software. 

In particular, Chapter 2 presents outline of implemented network entities, summarises interfaces 
with other COMET entities and briefly discusses deployment issues related to developed entities. 
Chapter 3 presents implementation of RAE. We present details of designed interfaces between RAE 
and other COMET entities, UML class diagrams related to internal components of RAE as well as 
sequence diagrams corresponding to basic RAE operations. In chapter 4, we present 
implementation of the stateless CAFE. It covers description of two CAFE modules, i.e., 
cafe_forward and cafe_intercept as well as a set of tools used to configure forwarding rules and 
packet interception filters on CAFE modules. Chapter 5 presents implementation of stateful CAFE. 
It covers aspects related to state installation within CAFEs by CRMEs, the operation of content 
delivery, and the mechanism of route optimisation. Finally, section 6 summarises this report and 
outlines plan for validation and integration of developed software in the testbed environment. In 
addition, this document includes 2 Annexes. Annex A presents exemplary configuration file for 
RAE and explains how to configure RAE. In Annex B, we present self-testing script for stateless 
CAFE. 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 7 of 56 
© Copyright 2010, the Members of the COMET 

 

3 Network elements overview 

Figure 1 and Figure 2 present the component diagram of network elements developed in COMET. 
The network elements cover the Routing Awareness Entity (RAE) and two types of Content Aware 
Forwarding Entity (CAFE), which were designed and developed for the decoupled and the coupled 
approaches, respectively. The main functions of network elements are the following:  

 The RAE is responsible for discovering inter-domain content delivery paths. It exchanges 
routing information with RAEs located in peering domains. The routing information covers 
network prefixes, supported COMET CoSs and long-term QoS characteristics of content 
delivery paths. Basd on this information, the RAE creates the set of preferred paths and 
provides them to CME/CRMEs. The information about content delivery paths is used in the 
resolution process to select the optimal source to deliver the content.  

 The CAFEs are used to deliver content from the content server to the client through the 
content delivery path selected during the resolution phase. We have designed and 
implemented two versions of CAFEs, called stateful and stateless, in order to meet path 
configuration requirements of the coupled and decoupled approaches.  

o The stateless CAFE assumes that the content delivery path is configured at the 
server side once the resolution process has been carried out. The stateless CAFE is 
used in the decoupled approach.  

o The stateful CAFE assumes that the content delivery path is configured in a hop-by-
hop manner during the content resolution process. This process is used in the 
coupled approach.  

 

Figure 1: Network components diagram for decoupled approach and their relation with cooperating 
entities  

stateless CAFE

cafe_intercept cafe_forward

cafe agent

CME

cme-cafe

Path Manager

ci_tool cf_tool

client/server
inter-CAFE

RAE

rae_main

rae-cme

Controller

inter-rae



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 8 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

  

Figure 2: Network components diagram for coupled approach and their relation with cooperating 
entity 

3.1 Interfaces 

Table I presents the list of interfaces and the protocols used for network elements in decoupled 
approach. 

 

Table I: The list of interfaces of network elements in the decoupled approach 

Interface 
ID 

Entity/Comp
onent 

providing the 
interface 

Entity/Compo
nent using the 

interface 

Purpose Protocol Reference 

inter-rae RAE RAE Exchange information 
about available/withdraw 
prefixes, paths and their 
characteristics.  

Protobuf Section 
4.2.2 

rae-cme CME Controller RAE Path and provisioning 
information sent by RAE 

Protobuf Section 
4.2.3 

inter-cafe CAFE CAFE Forward COMET packets 
between CAFEs 

COMET 
over 
Ethernet 
or over 
VLAN 
Ethernet 
or over 
GRE 

Section  
5.2.1 

CAFE-IP 
router or 
terminal 

CAFE IP router or 
terminal 

Forward IP packets from 
IP router (terminal) to 
edge CAFE 

IP over 
Ethernet 

Section  
5.2.2 

cme-cafe CAFE agent Path Manager CAFE configuration Protobuf Section 
5.2.3 

stateful CAFE

Content forwarding enine

CRME

cafe-crme

inter CAFE

RAE (or BGP)

rae_main (or bgp_main)

rae(or bgp)-crme

inter-rae
(or

inter-BGP)

CAFF

Content State Table



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 9 of 56 
© Copyright 2010, the Members of the COMET 

 

Table II presents the list of interfaces and the protocols used for network elements in the decoupled 
approach. 

Table II: The list of interfaces of network elements in the decoupled approach 

inter-CAFE CAFE CAFE Forward content between 
CAFEs 

UDP Section 
6.2.2 

cafe-crme 

 

CRME CAFE Announce and Notify 
messages sent by CAFE to 
CRME 

UDP Section  
6.2.1 

CAFE CRME Configure messages sent 
by CRME to CAFE 

UDP Section  
6.2.1 

 

3.2 Network elements deployment 

Figure 3 presents the deployment diagram for COMET network elements running in a single 
domain. The CME is deployed in the domain to perform content mediation functions in the 
decoupled approach. These same functions are performed by the CRMEs within the coupled 
approach. A single RAE server is deployed to collect information about content delivery paths and 
provide them to the CRE/CRMEs. On the other hand, several CAFEs are deployed to forward 
content from the content server to the client. In principle, the CAFEs should be located at domain 
edge nodes, i.e., the nodes where clients and servers are connected.  

 

 

Figure 3: Deployment diagram for COMET network elements in a single domain (and its relation 
with CME/CRME entity). 

 

User computer

web browser

edge CAFE
(client side)IP

edge CAFE
(server side)

Content Server

VLCIP

RAE server

COMET over Ethernet/VLAN/GRE

CME / CRME server

TCP

TCP

TCP
UDP



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 10 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

4 Routing Awareness Entity 

In this chapter, we present the implementation of the Routing Awareness Entity (RAE) and results 
of basic validation tests. The objective of RAE is to create and manage content delivery paths. The 
routing awareness is an off-line process. This process is responsible for reacting to changes in 
inter-domain network reachability and re-provisioning of domains. The routing awareness is 
performed by RAE entity, which should be located in every COMET domain as presented on Figure 
4. Each RAE requires information about its domain, which among others covers: Autonomous 
System (AS) number, IP addresses of peering RAEs and network prefixes available inside the 
domain, as well as supported COMET CoSs and values of QoS parameters, such as maximum IP 
Packet Transfer Delay (IPTD), maximum IP Packet Loss Ratio (IPLR), maximum bandwidth (BW), 
which are assured between any ingress and egress points of the domain. RAEs exchange Network 
Layer Reachability Information (NLRI) in update messages to build or update content delivery 
paths. Once a given prefix becomes unavailable, the RAE removes it by a withdraw message. Each 
content delivery path is characterised by the list of AS numbers, supported COMET CoS and 
aggregated values of QoS parameters. The RAE provides information about discovered routes and 
their properties to the Path Storage component of CME [4]. This information is used by the 
Decision Maker during content resolution process to select the best path for content consumption. 
Detailed specification of RAE is included in D4.2. [1] 

 

 

Figure 4: Routing awareness and provisioning 

4.1 Description of functionality 

The RAE is responsible for: 

 Connecting to other RAE in peering domains, 

 Propagating the information about own domain prefixes, 

 Gathering the information about paths available to prefixes of other domains, 

 Selection of preferred paths from available paths (to prefixes of other domains), 

 Exchanging the information about preferred paths to prefixes of other domains, 

Content Forwarding Plane

Content Mediation Plane

Access network with 

content server

Access network 

with client

Domain A

Domain B

Domain D

Domain C

RAE

RAE

RAE

RAE

Provisioning 
information

NLRI exchange

NLRI exchange

NLRI exchange

NLRI exchange

Provisioning 
information

Provisioning 
information

Provisioning 
information

NLRI exchange



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 11 of 56 
© Copyright 2010, the Members of the COMET 

 

 Sending the information about available prefixes and routing paths towards the prefix to 
the CME. 

RAE is a self-contained entity and does not provide any substitutable elements. 

4.2 Interfaces 

In this section we describe the RAE interfaces. It uses 3 interfaces that include:  

 Configuration file: the configuration file includes information about network prefixes 
available inside the domain(s), peering ASs, supported COMET CoSs and provisioned 
values of QoS characteristics between any pair of ingress and egress points.  

 Inter-RAEs interface: on this interface RAE exchange messages with peers to create inter-
domain content delivery paths.  

 RAE-CME: on this interface RAE provides information to CME about available content 
delivery paths.  

4.2.1 Configuration file 

The configuration is stored in a binary file following protobuf encoding. The definition of the 
structure is provided in file rae/resources/config.proto. Figure 5 illustrates this structure. The 
exemplary RAE configuration file is included in Annex A.  

 

Figure 5: Data structure in configuration file of the RAE 

The ConfigurationMessage includes all information required by RAE: 

 local AS number (local_as_number) and local IP address (local_ip_address), 

ConfigurationMessage

+local_as_number: int32
+local_ip_address: string
+local_port_number: int32
+keep_alive_time: int32
+connect_retry_time: int32
+hold_time: int32
+minimum_update_interval: int32
+limit_of_preferred_paths: int32
+peer_table: PeerEntry[0..n]
+prefix_table: NetworkPrefix[0..n]
+provisioning_table: ProvisioningEntry[0..n]
+cme_ip_address: string
+cme_port_number: int32

PeerEntry

+remote_ip_address: string
+remote_port_number: int32
+remote_as_number: int32
+class_table: ClassEntry[1..n]
+ttl_value: int32

Metric

+maximum_delay: float
+loss_ratio: float
+supported_bandwidth: float

NetworkPrefix

+ip_address: string
+prefix_length: int32

ProvisioningEntry

+source: Edge
+sink: Edge
+class_table: ClassEntry[1..n]

Edge

+prefix: NetworkPrefix
+as_number: int32

ClassEntry

+cos_id: int32
+metric: Metric



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 12 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

 parameters of decision process – number of preferred paths to prefixes of other domains 
(limit_of_preferred_paths), 

 list of peering RAEs (peer_table), 

 RAE‟s own domain prefixes (prefix_table), 

 RAE‟s own domain provisioning information (provisioning_table). 

 

4.2.2 Inter-RAE interface 

The RAEs exchange messages between themselves in an asynchronous manner. The message is 
encoded using protobuf encoding. The message structure is defined in file 
rae/resources/config.proto. Notice that the header has constant length of 5 bytes, while the length 
of the message body is variable. Figure 6 illustrates this structure. 

This sending part of the interface consists of a single method in tcp_connection class: 

void 

tcp_connection::send_message( 

boost::shared_ptr<MessageBody>message_ptr); 

The receiving part of the interface consists of a single callback method in the session class: 

void 

session::notify_inter_message( 

boost::shared_ptr<MessageBody>message_ptr); 

 

Figure 6: Inter-RAE message structure 

RAEs exchange four types of messages: open, keepalive, update and withdraw. The open message 
is used to initiate a peering session. Once the session is established the corresponding RAEs 
exchange update messages in order to propagate available network prefixes and paths. RAE‟s send 
withdraw messages to inform that some prefixes are no longer available. Moreover RAEs exchange 
keepalive messages to inform each other that they are still in service. If the RAE stops receiving 

Message BodyMessage Header

InterHeader

+message_size: fixed32

NetworkPrefix

+ip_address: string
+prefix_length: int32

Open

+as_number: int32

KeepAlive

UpdatePath

+as_numbers: int32[1..n]
+metric: Metric

Update

+entry_table: UpdateEntry[1..n]

UpdateEntry

+prefix: NetworkPrefix
+cos_id: int32
+path_table: UpdatePath[0..n]

Withdraw

+entry_table: WithdrawEntry[1..n]

WithdrawEntry

+prefix: NetworkPrefix
+cos_id: int32
+path_table: WithdrawPath[0..n]

WithdrawPath

+as_number: int32[1..n]



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 13 of 56 
© Copyright 2010, the Members of the COMET 

 

keepalive messages from the peering RAE, it withdraws all paths going through the “dead” domain. 
Next, it reselects preferred paths and propagates updated paths to available prefixes through 
update messages. 

 

4.2.3 RAE – CME interface 

The RAE reports the results (information about paths) to the CME. The interface is defined by the 
protobuf structure. 

This sending part of the interface consists of a single method in cme_connection class: 

void 

cme_connection::send_message( 

boost::shared_ptr<comet::cmerae::GenericRequest>gm); 

The receiving part of the interface consists of a single callback method in session class, which 
indicates that the connection to the CME has been reset using the version field in the Reply 
message: 

void 

rae_logic::notify_cme_reset(); 

Figure 7 presents the structure of the GenericRequest message. 

 

Figure 7: RAE-CME message structure 

The GenericMessage includes information about paths towards available prefixes (PathInf 
message) and provisioning information about the local domain (ProvInf message). 

 

GenericMessage

+type: Type
+prov: ProvInf
+path: PathInf

QoSParameters

+packet_delay: float
+packet_loss: float
+supported_bandwidth: float

DomainEdge

+peering_as_number: int32
+prefix_length: int32
+prefix: bytes

ProvInf

+source: DomainEdge
+sink: DomanEdge
+class_name: string
+qos_params: QoSParameters

Prefix

+prefix_length: int32
+prefix: bytes

Path

+as: int32
+qos_params: QoSParamters
+edge_as: int32

PathInf

+prefix: Prefix
+class_name: string
+paths: Path

Reply

+version: string
+error: bool

Type

+RESET
+VERSION
+INSERT_PROVISIONING
+REMOVE_PROVISIONING
+INSERT_PATHS
+REMOVE_PATHS



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 14 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

4.3 Design 

The RAE is implemented using the boost::asio library, which uses asynchronous network 
programming. Figure 8 shows the internal class structure of the RAE implementation. 

 

Figure 8: Internal class structure of the RAE 

The rae_main class handles the starting and the configuration of the RAE. The tcp_server and 
session_anteroom classes process incoming TCP connection requests. The tcp_connection class 
handles incoming and outgoing TCP connections. The session class controls RAE to RAE sessions 
including: sending and receiving of update/withdraw messages and automatic management of 
keepalive messages exchange. The rae_logic class carries main logic of RAE covering:  

 initiating of RAE to RAE sessions,  

tcp_server

+create()
-start_accept()
-handle_accept()

cme_connection

+create()
+start()
+send_message()
-start_connect()
-handle_connect()
-start_reconnect()
-handle_reconnect()
-read_header()
-handle_read_header()
-handle_read_message()
-start_write_message()
-handle_write_message()
-restart_keep_alive()
-handle_keep_alive()

rae_logic

+create()
+initialize()
+attach_session()
+clear_sessions()
+attach_tcp_connection()
+notify_cme_reset()
+get_all_updates()
+withdraw_all()
+process_update()
+process_withdraw()
+get_local_as_number()
+get_connect_retry_time()
+get_keep_alive_time()
+get_minimum_update_interval()
-propagate()
-do_ranking()
-get_update()
-send_cme_update()
-get_withdraw()
-send_cme_withdraw()

rae_main

+read_configuration()
+run()
-initialize()

rib

session_anteroom

+take_over()
-notify_inter_message()
-notify_connection_closed()
-handle_timeout()

tcp_connection

+create()
+attach_message_handler()
+attach_closing_handler()
+send_message()
-start_read_header()
-handle_read_header()
-handle_read_message()
-start_write_header()
-handle_write_header()
-handle_write_message()

session

+create()
+start()
+stop()
+attach_tcp_connection()
+is_established()
+send_update()
+send_withdraw()
-start_connect()
-handle_connect()
-start_reconnect()
-handle_reconnect()
-start_send_open()
-handle_send_open()
-restart_keep_alive_message()
-handle_keep_alive_message()
-reset_keep_alive_timeout()
-handle_keep_alive_timeout()
-start_minimum_update_interval()
-reset_minimum_update_interval()
-handle_minimum_update_interval()
-notify_inter_message()
-close_connection()
-send_initial_update()
-withdraw_all_paths()
-process_update()



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 15 of 56 
© Copyright 2010, the Members of the COMET 

 

 processing of incoming update and withdraw messages,  

 decision making process– selecting of preferred paths from available paths,  

 propagating to peering RAEs updated information about paths and prefixes via update and 
withdraw messages,  

 propagating to CME information about paths to available prefixes and about RAE‟s own 
domain provisioning information.  

The rib class provides data structures for paths and prefixes. Finally, the cme_connection class 
handles the connection to the CME.  

Most of the messages sent by the RAE are asynchronous, as depicted in Figure 9. Only session 
establishment (open message) requires confirmation from peering RAE. 

 

Figure 9: Message sequence diagram for inter RAE protocol. 

4.4 Testing and Test scenarios 

4.4.1 Validation tests 

No automatic standalone tests are envisioned for the RAE. During implementation phase, we 
performed basic manual tests, which proved that RAE works according to expectations.  

More advanced validation tests aimed to verify RAE functions corresponding to prefix 
advertisement, withdrawal, updating of provisioning information and reset/unavailability of RAE 
will be performed in the integration testbed. The objective of these tests is to verify interactions 
between RAEs as well as between RAE and CME. We defined three main tests cases: 

Test 1: single-domain 

The objective of this test is to verify whether the RAE provides correct information about network 
prefixes, intra-domain routing paths and CoS provisioning to the CME. The testbed network should 

session establishmentseq

updateseq

withdrawseq

RAE A RAE B

1 : open

2 : open

3 : update

4 : withdraw



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 16 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

correspond to a single domain with a single border router, a single access network and installed the 
RAE and the CME. 

Test 2: multi-domain 

The objective of this test is to verify whether RAEs located in different domains correctly advertise 
and withdraw information about network prefixes and routing paths. The topology consists of 7 
domains creating a tiered topology. 

 Test 3: stress-test 

This test aims to validate capabilities of RAE to handle large number of prefixes. The network 
should consist of two domains. The east domain hosts a variable number of prefixes, where the 
default count is 10000. The west domain receives the paths and propagates them to the CME. 

The results of validation tests will be reported in forthcoming deliverable D5.1. 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 17 of 56 
© Copyright 2010, the Members of the COMET 

 

5 Stateless Content Aware Forwarding Entity 

This chapter presents implementation issues of stateless Content Aware Forwarding Entity 
(CAFE). The stateless CAFE forwards packets based on information about the content delivery path 
stored inside the COMET header. The COMET header is attached and removed by edge CAFEs 
located close to the content server and the client, respectively. The content delivery path is selected 
during content resolution process and then it is configured in the edge CAFE during the path 
configuration process [4]. As a consequence, CAFEs maintain only the neighbourhood (local) 
information, i.e., how to forward a packet to the peering CAFEs.  

Figure 10 presents the concept of stateless content delivery process. In this example, we assume 
simple network consisting of a client domain, a server domain and two transit domains. Let us 
assume that the path selected during the content resolution process goes through domains C-B-A, 
which is different than the IP routing path (C-D-A). 

In order to deliver content through path C-B-A, the edge CAFE located in domain C intercepts the 
IP packets generated by the content server and encapsulate them with the COMET header. The 
CAFE includes the list of forwarding keys. Each forwarding key determines the next CAFE. Note 
that the forwarding key has only local meaning within a given CAFE. Consecutively, each CAFE on 
the content delivery path draws a successive forwarding key from the COMET header and 
encapsulates the packet following specific forwarding technology used between CAFEs. In our 
example, the forwarding key “2” enables forwarding of data packets from the edge CAFE located in 
domain C towards the CAFE located in domain B. Then, this CAFE uses the next forwarding key, 
“3”, to deliver packets to the edge CAFE located in domain A. Finally, the last CAFE removes the 
COMET header and sends the IP packet directly to its destination.  

 

 

Figure 10: The concept of stateless content forwarding 

The specification of stateless CAFE is included in deliverable D4.2 [1]. 

5.1 Description of overall functionality 

As mentioned above, the CAFE is the specialised network node responsible for content forwarding 
from the content server to the client using the COMET specific forwarding method, called stateless 
content forwarding. The main functionalities of CAFE cover: 

 Forwarding of content packets from input interface to queue at the output interface based 
on the information of content delivery path included in the COMET header and local 
forwarding rules included in CAFE forwarding table. 

Content Forwarding Plane

Client

Content

Content server

CAFE

CAFE

Content

Content

1

2

Content32

IP routing path

Selected content 

delivery path

Content32Content32

Edge CAFE
Edge CAFE

3

Domain A

Domain B

Domain C

Domain D



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 18 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

 Interception of IP packets received at the ingress edge node, classifying them according to 
configured filters and encapsulating them with appropriate COMET headers 

 Decapsulation of IP packets carried in COMET packets at egress nodes. 

 Measurements of traffic carried on content delivery paths.  
 

The CAFE consists of the following modules:  

 cafe_forwarder – this module is responsible for packet forwarding based on the COMET 
header, 

 cafe_intercept – this modules is responsible for intercepting of IP packets and 
encapsulating them with COMET header (according to configured filters), 

 cf_tool – this tool is used to manage the CAFE forwarding table and collect statistics about 
carried traffic, 

 ci_tool – this tool manages the CAFE intercept function and allows to collect statistics 
about carried traffic, 

 cafe_agent – this module is used as an interface between CME and CAFE. It receives 
configuration commands from CME and enforces them on CAFE using ci_tool or cf_tool. 
Moreover, it collects statistics from CAFE and provides this information to CME. 

 

Figure 11 presents CAFE modules implemented in the Linux OS environment.  

Linux 2.6

Kernel 
space

User space

C
A

FE
-C

A
FE

 in
te

rf
ac

e

C
A

FE
-I

P
 in

te
rf

ac
e

Comet 
packets

IP
packets

CME-cafe_agent interface

configuration and 
information data

CAFE

cafe_forward cafe_intercept

Kernel
 modules

Kernel
 modules

cf_tool ci_tool

cafe_agent

IP logic

IP 
packets

 

Figure 11: The CAFE modules in Linux environment 

In order to assure effective content forwarding, the cafe_forward and cafe_intercept modules are 
implemented as loadable kernel modules for Linux kernel 2.6. The cf_tool and ci_tool are user 
space programs, which use libnl library to communicate with kernel modules. The cafe_agent was 
implemented in python 2.7 environment with the protobuf interface to CME.  



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 19 of 56 
© Copyright 2010, the Members of the COMET 

 

5.2 Interfaces 

In this section, we describe the CAFE interfaces. Basically, the stateless CAFE uses 3 interfaces that 
are:  

 CAFE-CAFE: on this interface CAFEs exchange data packets, i.e. COMET packets and IP 
packets 

 CAFE-IP router or access networks: on this interface edge CAFE intercepts IP packets, and 
encapsulate them with the COMET header  

 CME-CAFE: this interface is used to receive configuration commands from the CME and 
configure CAFE by configuration tools. This interface is also used to report measurements 
performed by CAFE. 

5.2.1 CAFE-CAFE 

Once the Ethernet frame is received at network interface and placed in skb buffer, the kernel 
invokes the appropriate packet processing function for the protocol type encoded in EtherType 
filed. The CAFE uses this mechanism and defines its own protocol type with code 0xcccc. The 
following packet processing functions were implemented: 

 Cafe_forward 

o intcf_skb_recv(structsk_buff *skb, structnet_device *dev, 

structpacket_type *ptype, structnet_device *orig_dev); This 
function handles received COMET packet. It parses COMET header, finds 
forwarding key, which should be used for packet forwarding. Then, CAFE looks up 
the local forwarding table to find out the output interface and required layer 2 
headers. Based on this information, the outgoing frame is prepared and placed in 
skb buffer. Finally, COMET packet is transferred to output queue by 
dev_queue_xmit(skb). 

o void cf_decapsulate(structsk_buff *skb, structcafe_header 

*ch); This function is invoked at edge CAFE, when the last forwarding key is 
processed. In this case, the COMET header is removed and CAFE invokes IP packet 
processing by netif_receive_skb(skb). 

5.2.2 CAFE-IP router or access network 

This interface is used at edge CAFE to intercept IP packets and encapsulate them to the COMET 
header. For this purpose, we use the Linux kernel netfilter functions, which allow to modify packet 
processing. Once the IP packet is received at the interface, one of the following functions is 
invoked:   

 CAFE_intercept 

o unsigned int ci_nf_hook_ipv4(unsigned inthooknum, 

structsk_buff *skb, conststructnet_device *in, 

conststructnet_device *out, int (*okfn)(structsk_buff *));  

This function handles IPv4 packets. If the IPv4 packet matches the preconfigured 
filter (also called as the interception rule), cafe_intercept adds the COMET header 
to the IP packet placed in skb buffer. Then, it invokes the cafe_forward process 
instead of standard IP processing. Finally, the intercepted packet is forwarded to 
appropriate output interface based on the COMET header.  

o static unsigned int ci_nf_hook_ipv6(unsigned inthooknum, 

structsk_buff *skb, conststructnet_device *in, 

conststructnet_device *out, int (*okfn)(structsk_buff *)); 

This function handles IPv6 packets. If the IPv6 packet matches the predefined filter 
(also called as the interception rule), cafe_intercept adds the COMET header to 
packet placed in skb buffer. Then, it invokes the cafe_forward process instead of 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 20 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

standard IP processing. Finally, the intercepted packet is forwarded to appropriate 
output interface based on the COMET header. 

5.2.3 CME-CAFE management agent 

The CME-CAFE management agent interface is used to configure edge CAFE by CME and collect 
measurements performed by CAFEs. 

 CMEHandler: handle(self): This method handles configuration messages received 

from CME. If “CONFIGURE_STREAM” message is received, the handler invokes method 
configure_stream(). On the other hand, when message 
“COLLECT_EXPIRED_STREAMS” is received, the handler invokes method 
collect_expired_streams(). 

o configure_stream(self, m):This method is used to configure a stream to the 
respective CAFE.It returns CAFE_SUCCESS or CAFE_FAILURE depending on the 
operation status. 

o collect_expired_streams(self, m): This method is used to collect 
information about expired flows. It returns list of expired flows in the following 
form: 
<id><ip_source><ip_destination><protocol><port_source><port_destination><
bandwidth><cos><as_path><transferred_bytes><duration> 

5.3 Design 

In this section, we present details of the designed software modules related to stateless CAFE. For 
each module, we present UML class diagram and sequence charts corresponding to basic 
operations.  

5.3.1 cafe_forward module 

Figure 12 presents UML class diagram corresponding to cafe_forward module.  

 

Figure 12: The class diagram of cafe_forward module 

eu.comet.cafe.modules.cafe_forward

cf_protocol

+cf_register_protocol()
+cf_deregister_protocol()
+cf_skb_recv()
+cf_decapsulate()

cf_config

+cf_create_config()
+cf_destroy_config()
+cf_forwarding_entry()
+cf_create_fentry_ethernet()
+cf_create_fentry_vlan()
+cf_create_fentry_device()
+cf_remove_fentry()

cf_netlink

+cf_register_netlink()
+cf_deregister_netlink()
+cf_add_entry_ethernet_handler()
+cf_add_entry_vlan_handler()
+cf_add_entry_device_handler()
+cf_get_entry_handler()
+cf_remove_entry_handler()

cf_main

+cf_init()
+cf_exit()



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 21 of 56 
© Copyright 2010, the Members of the COMET 

 

The cafe_forward module uses 4 sets of functions. The cf_main functions are invoked when 
cafe_forward module is inserted or removed from the Linux kernel. The cf_netlink function 
enables communication between the cafe_forward module and the Linux kernel network 
processing functions. The cf_protocol functions are responsible for forwarding of COMET packets 
based on the COMET header. The cf_config functions are responsible for management of CAFE 
forwarding table. They allow creating and removing forwarding rules. The COMET packets could 
be forwarded using three data link technologies; these are: Ethernet, VLAN Ethernet and GRE 
(Generic Routing Encapsulation) tunnelling. 

 

Figure 13 presents the sequence diagram related to COMET packet forwarding in transit CAFE. 
Once CAFE receives the COMET packet, the cf_skb_recv() function is invoked. It processes the 
COMET header, finds current forwarding key in the list of forwarding keys, and then it looks up the 
CAFE forwarding table to find output interface and required layer 2 header. Finally, the 
cafe_forward module sends the COMET packet to the output interface. 

 

Figure 13: Sequence diagram related to packet forwarding in transit CAFE 

 

Figure 14 presents the sequence diagram related to COMET packet forwarding in egress edge 
CAFE. Once edge CAFE receives the COMET packet, the cf_skb_recv() function is invoked. It 
detects that the last forwarding key has been used and it invokes cf_decapsulate() function to 
remove the COMET header. Then, the packet is handed over to standard IP processing, which 
forwards the packet based on IP routing table to the appropriate output interface. 

 

CAFE nr 1 CAFE nr 2 CAFE nr3

cafe_forward cafe forward cafe_forward

1 : send COMET pkt()

2 : cf_skb_recv()

3 : send COMET pkt()



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 22 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

 

Figure 14: Sequence diagram related to packet forwarding in edge CAFE (egress point) 

 

5.3.2 cafe_intercept module 

Figure 15 presents the UML class diagram corresponding to cafe_intercept module.  

 

Figure 15: The class diagram of cafe_intercept module 

CAFE edge CAFE (egress) IP router or terminal

cafe_forward cafe_forward IP processing

1 : send COMET pkt()

2 : cf_skb_recv()

3 : cf_decapsulate()

4 : send IP pkt()

eu.comet.cafe.modules.cafe_intercept

ci_netfilter

+ci_register_netfilter()
+ci_deregister_netfilter()
+ci_nf_hook_ipv4()
+ci_nf_hook_ipv6()

ci_store

+ci_create_store()
+ci_destroy_store()
+ci_add_entry_ipv4()
+ci_find_entry_ipv4()
+ci_remove_entry_ipv4()
+ci_process_timeout_ipv4()
+ci_add_entry_ipv6()
+ci_find_entry_ipv6()
+ci_remove_entry_ipv6()
+ci_process_timeout_ipv6()
+ci_fetch_expired_streams()
+ci_watchdog()

ci_netlink

+ci_register_netlink()
+ci_deregister_netlink()
+ci_add_entry_ipv4_handler()
+ci_remove_entry_ipv4_handler()
+ci_add_entry_ipv6_handler()
+ci_remove_entry_ipv6_handler()
+ci_collect_entries_handler()

ci_main

+ci_init()
+ci_exit()



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 23 of 56 
© Copyright 2010, the Members of the COMET 

 

The cafe_intercept module uses 4 sets of functions. The ci_main functions are invoked when 
cafe_intercept module is inserted or removed from the Linux kernel. The ci_netlink function 
enables communication between the cafe_intercept module and the Linux kernel network 
processing functions. The ci_netfilter functions are responsible for filtering intercepted IP packets. 
If a packet matches the preconfigured filter, it is enhanced with the COMET header and handed to 
cafe_forward module. The other packets are passed to standard IP processing. The ci_store 
functions are responsible for management of packet filters. They allow creating, lookup and 
removing packet filters. Moreover, these functions allow collecting packet level statistics related to 
expired streams.  

Figure 16 presents the sequence diagram related to IP packet forwarding in ingress edge CAFE. 
Once it receives the IP packet, it uses the cafe_intercept module to apply packet filters. The packets 
matching the filter are handed to cafe_forward module, the other packets are handed to the 
standard IP processing.  

 

Figure 16: Sequence diagram related to packet forwarding in edge CAFE (ingress point) 

5.3.3 Configuration tools 

Figure 15 presents UML class diagram corresponding to CAFE configuration tools. 

edge CAFE (ingress)IP router or terminal CAFE

IP processing cafe_intercept cafe_forwarder cafe_forwarder

1 : send IP packet()

2 : ci_nf_hook_ipv4()

3 : netif_rx() 4 : cf_skb_recv()

5 : send COMET pkt()



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 24 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

 

Figure 17: The class diagram for CAFE configuration tools 

The CAFE requires two tools for configuration. The cf_tool is used to configure the CAFE 
forwarding table. It allows to add, remove or read configured forwarding rules. Below, we present 
how to use the cf_tool: 

# How to add forwarding rule 

cf_tool add_ethernet <key> <device> <dst.ethernet.address> 

cf_tooladd_device <key> <device> 

 

<key> - forwarding key (1 byte - unsigned integer) 

<device> - identifier of the network interface, e.g. eth0, gre0 

<dst.ethernet.address> - destination MAC address of Ethernet frame 

 

   # How to remove forwarding rule 

cf_tool remove <key> 

 

   # How to read forwarding rule 

cf_tool get <key> 

cf_tool get  

 

Some examples how to configure forwarding table for ethernet and gre interfaces: 

cf_tool add_ethernet a7 eth1 aa:11:b0:00:00:01 

cf_tool add_device 05 gre1 

cf_tool remove a7 

cf_tool get a1 

 

The ci_tool is used to configure and remove packet filters at cafe_intercept module. This tool 
allows also to collect statistics about expired streams.  

eu.comet.cafe.tools

cf_tool

+main()
+usage()
+get_entry()
+remove_entry()
+add_entry_device()
+add_entry_vlan()
+add_entry_ethernet()

ci_tool

+main()
+usage()
+add_entry()
+collect_entries()
+remove_entry()
+add_entry_ipv6()
+add_entry_ipv4()



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 25 of 56 
© Copyright 2010, the Members of the COMET 

 

 

# How to add packet filter 

ci_tool add <id> <timeout> <src.ip.address> <dst.ip.address> 

<protocol> <src.port> <dst.port> <list_of_forwarding_keys> 

 

  # How to remove packet filter 

ci_tool remove <id> 

 

  # How to collect statistics about expired flows 

 ci_tool collect 

 

Some examples how to configure /remove packet filer: 

ci_tool add 123 60 1.1.1.2 2.2.2.1 17 0 80 1234567890abcdef 

ci_tool remove 123 

ci_tool collect 

 

Figure 18 presents the sequence diagram related to cf_tool. It presents interactions between the 
cf_tool and cafe_forwarder module related to adding, removing and reading forwarding rule from 
CAFE forwarding table. 

 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 26 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

 

Figure 18: Sequence diagram related to cf_tool 

Figure 19 presents the sequence diagram related to ci_tool. It presents interactions between the 
ci_tool and cafe_intercept module related to adding or removing packet filters. Moreover, the 
ci_tool allows for collecting statistics about expired streams.  

 

Add forwarding rule

Remove forwarding rule

Read forwarding rules

cf_tool cafe_forward

1 : cf_tool add()

2 : OK

3 : cf_tool remove()

4 : OK

5 : cf_tool get()

6 : forwarding rules



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 27 of 56 
© Copyright 2010, the Members of the COMET 

 

 

Figure 19: Sequence diagram related to ci_tool 

 

5.3.4 CAFE management agent 

Figure 20 presents UML class diagram corresponding to CAFE management agent.  

 

Figure 20: The class diagram for CAFE management agent 

Adding interception rule

Removing interception rule

Collecting info about expired flows

ci_tool cafe_intercept

1 : ci_tool add()

2 : OK

3 : ci_tool remove()

4 : OK

5 : ci_tool collect()

6 : list of expired flows

eu.comet.cafe.agent

CmeHandler

+handle()
+configure_stream()
+collect_expired_streams()



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 28 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

The CAFE management agent is used to configure CAFE based on the configuration commands 
received from CME module. The CAFE agent runs the CmeHandler::handle () method to listen for 
configuration commands. If “CONFIGURE_STREAM” message is received, the handler invokes 
the configure_stream() function to configure cafe_intercept module for a given packet 
stream. On the other hand, when message  “COLLECT_EXPIRED_STREAMS” is received, the 
handler invokes function collect_expired_strems () to read statistics from cafe_intercept module 
about expired streams.  

Figure 21 presents the sequence diagram related to 2 operations performed by CAFE management 
agent that are: configuration of a new stream and collection of statistics about expired streams. The 
configuration commands, received via protobuf, are translated into invocation of ci_tool, which 
configures filter on cafe_intercept module.  

 

Figure 21: Sequence diagrams related to configuration of stream on edge CAFE and collecting 
information about expired streams 

 

5.4 Testing and test scenarios 

5.4.1 Validation tests 

The validation tests aim to verify functionalities of standalone CAFE corresponding to:  

 capabilities of CAFE agent to configure streams and collect statistics of expired streams,  

 capabilities of cafe_intercept to encapsulate IP packets with COMET header based on 
preconfigured interception rule, 

 capabilities of cafe_forward to handle COMET packets based on list of forwarding keys 
included in COMET header. 

Note that automatic tests are envisioned only for CAFE agent. The rest of the validation tests were 
performed manually assuming the simple scenario: tester<->standalone CAFE.

Configuration of strem

Collecting expired streams

CME CAFE Agent ci_tool cafe_intercept

1 : CONFIGURE_STREAM()

2 : ci_tool add()

3 : ci_add_entry_ipv4()

4 : OK
5 : OK

6 : OK

7 : COLLECT_EXPIRED_STREAMS()
8 : ci_tool collect()

9 : ci_collect_entries()

10 : List of entries
11 : List of entries

12 : List of entries



Seventh Framework STREP No. 248784   D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 29 of 56   Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 
 

5.4.2 Validation results 

Below we present results of validation tests corresponding to standalone stateless CAFE. 

T
e

s
t C

a
te

g
o

r
y

 

T
e

s
t 

TimeStamp/Owner Test Description Step Expected Actual 

R
e

s
u

lt 

1. C
A

F
E

 A
g

e
n

t 

1 17-02-2012/ptl+wut 

Perform self test of CAFE 
configuration agent (test.py) 

(check configuration a 10 flows and 
then collection of the flows 

statistics) 

Initialise CAFE agent. 
 

Compile and run test.py (Appendix B: CAFE 
agent test script) 

 
Script executes the following: 

 Connect to server 

 Collect streams 

 Receive response 

 Send configure stream 

 Receive response 
     

Configuration performed. 
Receive success message for each 

configuration for all 10 flows. 

Configuration performed. 
Receive success message for each 

configuration for all 10 flows. 

P
A

S
S

 

2
. C

A
F

E
 in

te
r

c
e

p
t  

2 17-02-2012/ptl+wut 
Intercept based on src IP, dstIP, 

srcport, dstport, protocol number, 
with different  forwarding keys, etc. 

Configure CAFE with forwarding key, egress 
interface, and destination MAC address. 

 
Provide intercept parameters, source, 

destination, path keys etc. 
 

Capture frame on the source and destination 
edge CAFE. 

 
Analyze frame. 

Frame intercepted based on 
necessary parameters.  

The COMET header contains the 
necessary forwarding data at the 

specified structure. 

Frame intercepted based on 
necessary parameters.  

The COMET header contains the 
necessary forwarding data at the 

specified structure. 

P
A

S
S

 

3
. C

A
F

E
 fo

r
w

a
r

d
 

3 10-02-2012/WUT 

Forwarding of Comet frames based 
on forwarding key. Frame is 

forwarded via standard Ethernet 
interface. 

Configure CAFE with forwarding key, egress 
interface, and destination MAC address. 

 
Send Comet frame (with proper key) to ingress 

interface. 
 

Capture frame on proper egress interface. 
 

Analyze egress frame.  

Frame is forwarded via proper 
egress interface. Captured frame 

has  modified: 
Comet header (index filed is 

incremented), source MAC address 
(source MAC address is set with 

egress interface‟s MAC address) and 
destination MAC address 

(destination MAC address is set as 
defined). 

Frame is forwarded via proper 
egress interface. Captured frame 

has  modified: 
Comet header (index filed is 

incremented), source MAC address 
(source MAC address is set with 
egress interface‟s MAC address) 

and destination MAC address 
(destination MAC address as 

defined). 

P
A

S
S

 



Seventh Framework STREP No. 248784   D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 30 of 56       Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

T
e

s
t C

a
te

g
o

r
y

 

T
e

s
t 

TimeStamp/Owner Test Description Step Expected Actual 

R
e

s
u

lt 

4 10-02-2012/WUT 
Forwarding of Comet frames based 

on key. Frame is forwarded via 
VLAN interface. 

Configure CAFE with forwarding key, egress 
interface, and destination MAC address. 

 
Configure egress VLAN interface. 

 
Send Comet frame (with proper key) to ingress 

interface. 
 

Capture frame on proper egress interface. 
 

Analyze egress frame. 

Frame is forwarded via proper 
egress interface. Captured frame 

has added 802.1q header with 
configured VLAN Tag. Captured 

frame has  modified: 
Comet header (index filed is 

incremented), source MAC address 
(source MAC address is set with 

egress interface‟s MAC address) and 
destination MAC address 

(destination MAC address is set as 
defined). 

Frame is forwarded via proper 
egress interface. Captured frame 

has added 802.1q header with 
configured VLAN Tag. Captured 

frame has  modified: 
Comet header (index filed is 

incremented), source MAC address 
(source MAC address is set with 
egress interface‟s MAC address) 

and destination MAC address 
(destination MAC address is set as 

defined). 

P
A

S
S

 

5 10-02-2012/WUT 
Forwarding of Comet frames based 
on key. Frame is forwarded via GRE 

tunnel interface. 

Configure CAFE with forwarding key. 
 

Configure egress GRE tunnel interface. 
 

Send Comet frame (with proper key) to ingress 
interface. 

 
Capture frame on proper egress interface. 

 
Analyze egress frame. 

Frame is forwarded via proper 
egress interface. Captured frame 

has added GRE and IPV4 headers. 
Captured frame has modified: 
Comet header (index filed is 

incremented), source MAC address 
(source MAC address is set with 

egress interface‟s MAC address) and 
destination MAC address 

(destination MAC address is 
resolved by ARP protocol). 

Frame is forwarded via proper 
egress interface. Captured frame 

has added GRE and IPV4 headers. 
Captured frame has  modified: 

Comet header (index filed is 
incremented), source MAC address 

(source MAC address is set with 
egress interface‟s MAC address) 

and destination MAC address 
(destination MAC address is 
resolved by ARP protocol). 

P
A

S
S

 

6 10-02-2012/WUT 
Decapsulation of Comet frames and 

forwarding de-capsulated IPv4 
datagrams. 

Configure IPv4 routing. 
 

Send IPv4 datagram encapsulated into Comet 
frame (with value of the length field equal to 
value of the index field) to ingress interface.  

 
Capture frame on proper egress interface. 

 
Analyze egress frame. 

Frame is forwarded via proper 
egress interface (accordingly to 

IPv4 routing). Captured Ethernet 
frame encapsulates IPv4 datagram 

(no Comet header). Captured 
Ethernet frame has ether_type field 

set up with “0x0800” 
 

Frame is forwarded via proper 
egress interface (accordingly to 

IPv4 routing). Captured Ethernet 
frame encapsulates IPv4 datagram 

(no Comet header). Captured 
Ethernet frame has ether_type field 

set up with “0x0800” 
 

P
A

S
S

 

7 10-02-2012/WUT 
Decapsulation of Comet frames and 

forwarding de-capsulated IPv6 
datagrams. 

Configure IPv6 routing. 
 

Send IPv6 datagram encapsulated into Comet 
frame (with value of the length field equal to 
value of the index field) to ingress interface.  

 
Capture frame on proper egress interface. 

 
Analyze egress frame. 

Frame is forwarded via proper 
egress interface (accordingly to 

IPv6 routing). Captured Ethernet 
frame encapsulates IPv6 datagram 

(no Comet header). Captured 
Ethernet frame has ether_type field 

set up with “0x86DD” 
 
 

Frame is forwarded via proper 
egress interface (accordingly to 

IPv6 routing). Captured Ethernet 
frame encapsulates IPv6 datagram 

(no Comet header). Captured 
Ethernet frame has ether_type field 

set up with “0x86DD” 
 

P
A

S
S

 

 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 31 of 56 
© Copyright 2010, the Members of the COMET Consortium 

 
 

6 Stateful Content Aware Forwarding 

This chapter describes the implementation of the stateful content-aware forwarding operations 
within the proof-of-concept emulator, which is based upon the technical specifications given in 
COMET deliverable, D4.2 [1]. While content forwarding is carried out by the CAFE, due to the 
coupled nature of the stateful approach, operations of other COMET entities related to content 
forwarding are also detailed in this section. 

6.1 Overall functionality 

Content-aware forwarding within the stateful approach consists of three distinct operations: 

1. The installation of content states by CRMEs within the CAFEs on the path along which the 
content is being resolved. This is carried out during the content resolution phase specified 
in COMET deliverable, D3.2 [4]. 

2. The delivery of content, which follows the CAFE states installed during the content 
resolution phase. Content delivery is typically carried out in a hop-by-hop fashion, where 
„hop‟ here refers to CAFE-level hops. 

3. Optimisation of the route taken to deliver the content. Since content is typically resolved 
from the customer along its provider domains, the route taken tends to be long. Therefore, 
route optimisation aims to ensure content is delivered along the optimal route. 

The primary entity involved in content delivery is the content-aware forwarding entity (CAFE), the 
architecture of which is shown in Figure 22. CAFEs contain three main logical components, 
namely:  

Content State Table – stores state information relating to content streams that the CAFE is 
currently handling. The basic table structure is given in the next section. 

Content Forwarding Engine – forwards content it receives from uphill CAFEs to downhill 
CAFEs, in accordance with the states contained in the Content State Table. 

Content-Aware Forwarding Function (CAFF) – logically interfaces the CAFE with its local 
CRME to allow for installation of states and to send notifications of new content flows. 

CAFEs also contain a number of logical interfaces, which are specified in the following subsection. 

 

Figure 22: Internal stateful CAFE architecture 

CAFF

Content Forwarding Engine

CAFE-CRME Interface

C
A

F
E

-C
A

F
E

 In
te

rfa
c
e

C
A

F
E

-C
A

F
E

 In
te

rfa
c
eContent

Content 

State Table

NotifyConfigure

IP Routing Logic

Content



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 32 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

6.2 Interfaces 

Communication between CAFE components and external entities is carried out over two main 
interface types: a CRME-CAFE interface and a CAFE-CAFE interface. TheCRME-CAFE interface 
connects the CAFE with its local CRME to allow it to send Notify messages and receive 

Configure messages. The CAFE-CAFE/Router interface connects the CAFE to its neighbouring 
CAFEs and routers, both within its own domain and within its neighbouring domains. In the 
following subsections, we provide a detailed description of both of these logical interfaces, and the 
communication methods used across them. 

6.2.1 CAFE-CRME Interface 

The CAFE-CRME interface is that over which control-plane messages are exchanged between the 
CRME and CAFE, namely, the Announce, Configure, and Notify messages, the descriptions of 
which are given in Table 3. Figure 23 shows the interaction between the CAFE and CRME, 
including the messages exchanged between them. 

 

Table 3: CRME-CAFE interface messages 

Message Information Passed Description 

Announce 

- neighbourCAfeAddr 

- neighbourCafePort 

- neighbourCrmeAddr 

Sent by a CAFE to its local CRME when it is starting up, to 
advertise to the CRME its presence, and its connectivity 
with other COMET entities (other CRMEs or CAFEs). 

Configure 

- contentID 

- nextHopCafeAddr 

- nextHopCafePort 

Sent by a CRME to its local CAFEs to install content states 
within it, in response to content resolution requests the 
CRME receives from its neighbouring CRMEs. 

 

Notify 

- contentID 

- contentSrcAddr 

- prevHopCafeAddr 

- nextHopCafeAddr 

- nextHopCafePort 

Sent by a CAFE to its local CRME to notify it about new 
content that has begun to flow through after successfully 
resolving content to a content source. 

 

CAFE CRME

Announce  /  Notify

Configure
 

Figure 23: CRME-CAFE communication 

6.2.2 CAFE-CAFE Interface 

The CAFE-CAFE interface is a data-plane interface over which content is received from previous-
hop CAFEs and forwarded to next-hop CAFEs along a content path. The header of each content 
chunk contains a number of important pieces of information, as shown in Table 4. Figure 24 shows 
the interaction that occurs between CAFEs, including the messages exchanged between them. 

 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 33 of 56 
© Copyright 2010, the Members of the COMET 

 

Table 4: CAFE-CAFE interface messages 

Message Information Passed Description 

Content 

- contentID 

- originAddr 

- prevCafeAddr 

- prevCafePort 

- <chunk of content> 

Sent either from one CAFE to the next-hop CAFE along a 
content delivery path, from a Content Publisher to the first 
CAFE on the content delivery path, or from the last-hop 
CAFE to the Content Consumer.  

 

 

Content 

Publisher
CAFE

Content 

ConsumerContent Content

Content
 

Figure 24: Content flow along CAFE interfaces 

6.3 Design 

6.3.1 Overall Content State Installation, Delivery and Route Optimisation  

Figure 25 shows the implementation of CAFE state installation. Once a CRME receives a content 
consumption request from its counterpart in the previous hop domain, the processConsume() 

function is invoked, which carries out two main operations, namely to forward the Consume 

message towards the next-hop CRME, and to send Configure messages to both the local egress 
and ingress border CAFEs connecting the two neighbouring domains. Upon reception of the 
Configure messages by each CAFE, the processConfigure() function is invoked, which 
carries out the operation of installing the appropriate content state within their content state 
tables.  

 

 

Figure 25: CAFE content state installation process in each domain 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 34 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

Figure 26 shows the content delivery process that takes place after the resolution phase. Once the 
content consumption request reaches the content server, the content server responds by 
forwarding the requested content to the ingress CAFE of the next-hop domain towards the client. 
Upon reception of this content at the ingress CAFE, the processContent() function is invoked, 
which primarily entails reading the ID of the content it has received and looking up in its content 
state table the next egress CAFE hop(s) within its domain to which to forward the content. When 
the egress CAFE(s) have received the content, it will carry out the same procedure as the ingress 
CAFE and forward the content to the ingress CAFE(s) of the neighbouring domain(s). The ingress 
and egress CAFEs in each domain will carry out the same process, until the content reaches the 
client. 

 

 

Figure 26: Content delivery process 

 

Figure 27 shows the basic route optimisation process. For every content chunk that arrives at an 
ingress CAFE, the processContent() function that is invoked will also carry out a check of its 
active session table as to whether or not it needs to notify its local CRME about the arrival of a new 
content stream into the domain. If it does, it will send a Notify message to the CRME indicating 
the Content ID, the address of the content server, and the address of the egress CAFE of the 
previous domain-hop. Upon reception of this message, the CRME will in turn invoke the 
processNotify() function which will add an entry to its ActiveSessions table which it 
maintains for all Content flows it its domain, and will look up in its BGP routing table to check if 
the next-hop prefix towards the content server contained in the routing table differs from the 
address of the prefix of the previous-hop CAFE. If it does differ, the CRME will send a scoped 
Consume message to the next-hop CRME along the route-optimised (RO) path, and the resolution 
process will continue as before. The original CRME will also update its content ID entry in its 
content table with the route-optimised next-hop, so that future requests for the same content will 
follow the optimised path during the resolution phase.  



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 35 of 56 
© Copyright 2010, the Members of the COMET 

 

 

 
 

Figure 27: Route optimisation process 

6.3.2 Class Diagram of Proof-of-concept Emulator 

Figure 28 shows the class diagram of the proof-of-concept emulator, which consists of four main classes 
corresponding directly to the four main COMET entities used for the coupled approach. These classes are the 
Crme, ContentPublisher, ContentConsumer, and Cafe.  

 

Crme

+init(args[])

+start()

+stop()

+run()

+processRegister(pkt)

+processPublish(pkt)

+processConsume(pkt)

+processAnnounce(pkt)

+processNotify(pkt)

+displayContentTable()

+displayNextHopDomains()

+getAddressPrefix(addr)

ContentServer

+init(args[])

+start()

+stop()

+run()

+sendRegister(ContentID)

+processConsume(pkt)

+sendContent(pkt)

ContentClient

+init(args[])

+start()

+stop()

+run()

+sendConsume(ContentID)

+processContent(pkt)

Cafe

+init(args[])

+start()

+stop()

+run()

+sendAnnounce()

+processConfigure(pkt)

+processContent(pkt)

+displayContentStateTable()

+getAddressPrefix(addr)
 

Figure 28: UML class diagram of COMET proof-of-concept emulator implementation 

Common to each of these classes are four functions:  

init(args[]) – reads in the arguments from the script file to initialise the entity. 

start() – opens the UDP sockets over which communication to other COMET entities is 

to take place. 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 36 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

stop() – closes all UDP sockets. This function is invoked when all commands in the 

control scrip have been exexuted. 

run() – carries out the main run routine. This routine listens for messages received over 

its interfaces and responds to messages it receives accordingly. The function runs until the 
stop() function is invoked. 

The following subsections will outline the functions related to the content forwarding plane 
operations. 

6.3.2.1 Crme Functions 

The Crme class contains three main functions loosely related to the content forwarding plane: 

processConsume(pkt) – carries out content resolution and sends a Configure 

message to the ingress and egress CAFEs for the appropriate content states to be installed. 

processAnnounce(pkt) – processes Announce messages received from its local CAFEs 

and updates its locCAFE tables accordingly. 

processNotify(pkt) – processes Notify messages received from a local ingress CAFE 

and updates its ActiveSessionsTable with information about the new content flow. It 
also carries out route optimisation if a more optimal route exists. 

getAddressPrefix(addr) – a helper function to extract the prefix from an IP address 

which is then used routing table lookups for the purpose of route optimisation. 

6.3.2.2 ContentServer Functions 

The ContentServer class contains one main function related to content forwarding: 

sendContent(pkt) – sends content to the next hop CAFE towards the content client. 

6.3.2.3 ContentClient Functions 

The ContentClient class contains one main function related to content forwarding: 

processContent(pkt) – processes content it receives, saving it to disk in its own 

content directory. 

6.3.2.4 Cafe Functions 

The Cafe class contains three main functions related to content forwarding: 

sendAnnounce() – sends an Announce packet to its local CRME.  

processConfigure(pkt) – processes Configure messages it receives by installing 

state in its ContentStateTable. 

processContent(pkt) – processes content chunks it receives by looking up from the 

ContentStateTable the next CAFE hop towards the content client based on the 

ContentID, and transmitting the content over the correct UDP socket. 

The following functions are specific to the proof-of-concept emulator for the purpose of 
textual display during run time: 

displayContentStateTable() – prints to screen all entries in its 

ContentStateTable. 

6.3.3 CRME Design 

Figure 29 shows a UML state diagram illustrating the design of the CRME class, in particular the 
parts of that class relating to content delivery and route optimisation. The parts related to content 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 37 of 56 
© Copyright 2010, the Members of the COMET 

 

publication and resolution are given in COMET deliverable, D3.3 [3]. When the CRME is in its idle 
state, it will be listening for CAFE messages, namely, an Announce or a Notify message. If the 

former is received, the CRME will update its internal configuration table (locCafe and 
nextHopCrmes) with the respective IP addresses. 

If the CRME receives a Notify message, it will first determine whether the notification relates to a 
new session („create‟) or a terminated session („teardown‟). In the latter case, the CRME will simply 
remove the corresponding entry for the corresponding Content ID from the CRME‟s 
activeSessions table and then return to the idle (listening) state. In the former case, it will 
check its BGP routing table to see if a more optimal route exists towards the content source of the 
given Content ID. If one does exist, it will forward a Consume message along it, and then add a 
corresponding entry to the active sessions table. If an optimal route does not exist, the CRME 
will proceed straight away to add an entry to the active sessions table, thereafter returning to the 
idle state. 

 

Initialising

CRME

Waiting for 

Message

‘Announce’ Msg 

Received

‘Notify’ Msg 

Received

Updating config tables

entry / add entry to ‘locCafe’ 

and ‘nextHopCrme’ tables

Updating session table

entry / add/remove entry      

to/from ‘activeSessions’ table

‘Consume’ Msg 

sent towards 

content source 

along optimal path

[more optimal 

route not found]

[more optimal 

route found]

[create]

[teardown]

 

Figure 29: UML state diagram for content delivery and optimisation aspects of the CRME 

6.3.3.1 Starting the CRME 

Details on how the CRME is started and initialised in the proof-of-concept emulator are given in 
COMET deliverable D3.3 [3]. 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 38 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

6.3.3.2 CRME Tables related to Content Delivery 

To ensure that content requests are resolved only so far as to reach an existing a content path 
already established for content with the same identifier, the CRME maintains an ActiveSessions 
table. This table contains entries for all content flowing through each of the CAFEs it controls, and 
contains the following fields: 

 

ContentID 

<IngressCAFEaddr, 

IngressCAFEport> 

numEgressCAFEs <EgressCAFEaddr, 

EgressCAFEport>, ... 

 

where: 

ContentID = the ID of the content; 

<IngressCAFEaddr, IngressCAFEport> = the address and port number of the ingress CAFE 

receiving the content with the given ContentID; 

numEgressCAFEs = the number of egress CAFEs to which the content with the given ContentID 
is being forwarded; 

<EgressCAFEaddr, EgressCAFEport> = the address and port number of the egress CAFE to 
which content is forwarded. The number address/port entries is indicated by the previous field 
(numEgressCAFEs). 

6.3.4 CAFE Design 

Figure 30 shows a UML state diagram illustrating the design of the CAFE class.  

 

Waiting for 

Message

Configure 

Msg Received

Installing Content State

entry / add entry to 

contentStateTable

Content Msg 

ReceivedInitialising

CAFE

[notify 

flag set]

[notify 

flag not set]

Notify Msg sent 

to local CRME

Content Msg 

forwarded to 

next hop

Setting notify 

flag

 
 

Figure 30: UML state diagram for content delivery aspects of the CAFE 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 39 of 56 
© Copyright 2010, the Members of the COMET 

 

When the CAFE is in its idle state, it will be listening for both control- and data-plane messages, 
namely, Configure and Content messages, respectively. If a Configure message is received, 

the CAFE will install states within its content state table (ContentStateTable) associating a 
content ID with a list of next-hop addresses to which to forward the content. 

If the CAFE receives a Content message, it will first determine whether a notification related to 
this received content ID was previously sent to the CAFE‟s local CRME. Such notification state is 
related not only to the content ID, but also to the previous-hop CAFE address and port number 
from which this content was forwarded. If the notify flag is not set (i.e. a notification was not 
previously sent for the given content ID and previous-hop CAFE address/port) the CAFE will 
proceed to send a Notify message to the CRME, containing the information shown in Table 3. The 
notify flag is then set to ensure that future notifications are not sent for content with the same ID 
received from the same previous-hop CAFE address and port number. If the notify flag is already 
set, the CAFE will not send a Notify message. Then, whether or not the notify message was set, the 
CAFE will forward the content to the next-hop, as dictated by the state within the content state 
table. 

6.3.4.1 Starting the CAFE 

The CAFE entity is started using the following command format (in the startup xml script): 

+time ON_ROUTER router_name usr.curling.Cafe myport myCRMEaddr myCRMEport 

nInterDLink <neighbourCAFEaddr neighbourCAFEport neighbourCRMEaddr> 

where: 

router_name = the address or name of the current virtual router on which the CAFE resides; 

myport = the port used by this CAFE; 

myCRMEaddr = the address of the local CRME to which the CAFE is attached; 

myCRMEport = the port of the local CRME to which the CAFE is attached; 

nInterDLink = the number of inter-domain links stemming from the CAFE; 

<neighbourCAFEaddr neighbourCAFEport neighbourCRMEaddr> = nInterDLink x tuple 
of the neighbour CAFE address, the neighbour CAFE port and the corresponding address of the 
neighbour CRME. 

6.3.4.2 CAFE Tables 

In the implementation of the CAFE entity, there exists one main CURLING-related table, which is 
the content state table, as shown below: 

ContentID PrevHopCAFEaddr numNextHops <NextHopCAFEaddr, NextHopCAFEport>, ... 

 
where: 

ContentID = the ID of the content; 

PrevHopCAFEaddr = the address of the previous hop CAFE from which content was received; 

numNextHops = the number of next hops to which the content represented by ContentID is 
forwarded; 

<NextHopCAFEaddr, NextHopCAFEport> = the address and port number of a next hop CAFE 
to which content is forwarded. 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 40 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

6.4 Testing and test scenarios 

The testing of the emulator will be carried out on each of the basic individual features of content 
delivery, namely, content state installation and content delivery. The following subsections detail 
each of the tests that will be carried out, including the validation criteria of each test. Note that the 
relevant validation tests of the content publication and resolution processes will be carried out 
separately and documented in D3.3 [3]. The validation of the overall system and advanced features 
such as route optimization will be carried out in the future, and documented in D5.1. 

6.4.1 Validation tests  

To test the installation of states within CAFEs, the inter-domain topologies shown in Figure 31 and 
Figure 32 will be used. These test topologies involve a content consumer attached at one point of 
the network issuing a request from content hosted at another point within the network which 
happens to be already published to the COMET system. The tests aim to validate that 

 Content states are installed only in the appropriate CAFEs. So, for the tier-1 domain in the 
case of the topology shown in Figure 32, no content states should be installed in CAFE 1.3 
or in any CAFEs under it. 

 The correct handling ofConsumemessages at the content client. 

 The requested content passes only through the CAFEs in which a corresponding content 
state is present. 

 Content is delivered successfully from content server to content client, and stored correctly 
at the content client. 

CONSUME

{Content1}

REGISTER

{Content1)

1.1

1.2 1.3

2.1

2.2

4.2

4.1

4.3

3.2

3.3

3.1

5.1

5.2

5.3

2.3

Content 

Consumer Content 

Server

Tier-1

Tier-2

Tier-2

Tier-3

 

 

Figure 31: Topology to test basic state installation and content delivery (topology 1) 

 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1  Page 41 of 56 
© Copyright 2010, the Members of the COMET 

 

CONSUME

{Content1}

1.1

1.2

1.3

2.1

2.2

5.2

5.1

5.3

3.2

3.3

3.1

6.1

6.2

6.3

2.3

Content 

Consumer
Content 

Server

Tier-1

Tier-2

Tier-2

Tier-3

4.2

4.3

4.1

7.1

7.2

7.3

1.4

REGISTER

{Content1}

 

 

Figure 32: Topology to test basic state installation and content delivery (topology 2)



Seventh Framework STREP No. 248784   D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 42 of 56   Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 
 

6.4.2 Validation results  

This table details the validation procedures and results for basic content state installation and delivery, which was carried out using the 
implementation of the proof-of-concept emulator. These tests were carried out based on the two topologies shown in the previous subsection 
(Figure 31 and Figure 32). 

 

T
e

s
t C

a
te

g
o

r
y

 

T
e

s
t 

TimeStamp/
Owner 

Test 
Description 

Step Output / Result 

R
e

s
u

lt 

1
. C

o
n

te
n

t S
ta

te
 In

s
ta

lla
tio

n
  

1 
07-02-

2012/georgeka
mel 

Basic state 
installation 
(topology 1)  

Reception of Configure message by CAFEs from CRME 

The following content state tables are installed in the domain with 
prefix 2: 
 
CAFE ContentStateTable at 2.2: 

Content ID  |  Next Hop Address  |  Next Hop Port     

MyContent1     2.3                  2000 

 

CAFE ContentStateTable at 2.3: 

Content ID  |  Next Hop Address  |  Next Hop Port     

MyContent1     4.2                  2000 

 

Similar content state tables are installed in domains with prefix 1, 
3, 4, and 5. 

P
A

S
S

 

State installation in CAFE content state table 

2 
09-02-

2012/georgeka
mel 

Basic state 
installation when 

more than two 
CAFEs are present 

within a single 
domain (topology 

2) 

Reception of Configure message by CAFEs from CRME 

The following content state tables are installed in the domain with 
prefix 1: 
 
CAFE ContentStateTable at 1.2: 

Content ID  |  Next Hop Address  |  Next Hop Port     

MyContent1     2.2                  2000 

 

CAFE ContentStateTable at 1.4: 

Content ID  |  Next Hop Address  |  Next Hop Port    

MyContent1     1.2                  2000 

 

No content state table is installed at CAFE 1.3. 

P
A

S
S

 

State installation in CAFE content state table 



Seventh Framework STREP No. 248784 D4.3 Prototype Implementation and System Integration...  
Commercial in Confidence 

 

Version 1.1  Page 43 of 56 
© Copyright 2010, the Members of the COMET 

 

T
e

s
t C

a
te

g
o

r
y

 

T
e

s
t 

TimeStamp/
Owner 

Test 
Description 

Step Output / Result 

R
e

s
u

lt 

2
. C

o
n

te
n

t D
e

liv
e

r
y

 

3 
06-02-

2012/georgeka
mel 

Basic content 
delivery 

 (topology 1) 

Look up next hop from CAFE content state table 

CAFE 5.3: Content MyContent1 received and will be 

sent to 5.2:2000 

 

CAFE 5.2: Content MyContent1 received and will be 

sent to 3.3:2000 

 

... 

 

CAFE 4.2: Content MyContent1 received and will be 

sent to 4.3:2000 

 

CAFE 4.3: Content MyContent1 received and will be 

sent to 4.3:1000 

 

CC: Content MyContent1 received and saved to: 

    ./Content/4.3 1000/MyContent1 

P
A

S
S

 

Forward content to next hop 

4 
09-02-

2012/georgeka
mel 

Basic content 
delivery when 
more than two 

CAFEs are present 
within a single 

domain (topology 
2) 

Look up next hop from CAFE content state table 

CAFE 7.3: Content MyContent1 received and will be 

sent to 7.2:2000 

 

CAFE 7.2: Content MyContent1 received and will be 

sent to 4.3:2000 

 

... 

 

CAFE 5.2: Content MyContent1 received and will be 

sent to 5.3:2000 

 

CAFE 5.3: Content MyContent1 received and will be 

sent to 5.3:1000 

 

CC: Content MyContent1 received and saved to: 

    ./Content/5.3 1000/MyContent1 

P
A

S
S

 

Forward content to next hop 

 

 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 44 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

7 Summary 

This deliverable presented the software design and implementation of entities developed for 
Content Forwarding Plane (CFP) of the COMET system. In the COMET architecture [1], the CFP is 
responsible for content delivery from content server to content consumer. It covers three entities 
that are: Routing Awareness Entity (RAE) and stateless Content Aware Forwarding Entity (CAFE) 
and stateful CAFE. These entities were developed following specification provided in COMET 
deliverable, D4.2 [2]. 

In this deliverable we presented details of developed entities. For each entity, we presented its 
internal and external interfaces with other COMET entities, UML class diagram related to internal 
components as well as sequence diagrams related to basic operations and interactions between 
components. Moreover, we defined and performed basic validation tests to verify functionalities of 
implemented software. 

In particular in this document, we presented outline of implemented network entities, summary of 
interfaces with other COMET system entities and briefly discussed deployment issues related to 
developed entities. The implementation of RAE was presented in chapter 3. The RAE was 
implemented in C++ as a standalone entity with interfaces to CME, cooperating RAE and domain 
management system. The stateless CAFE was described in chapter 4. It was implemented as two 
loadable Linux kernel modules, cafe_forward and cafe_intercept. The cafe_forward module 
forwards COMET packets containing content, while the cafe_intercept module is responsible for 
encapsulation of IP packets received at edge nodes into COMET packets. Section 5 has described 
the implementation of content state maintenance and delivery, as well as route optimisation 
performed by stateful CAFE within the coupled approach. A number of tests have been outlined 
which aim to ensure correct functionality of the coupled approach‟s proof-of-concept emulator, 
providing a working framework in which to develop a graphical interface to illustrate the key 
features of the coupled approach. 

In this deliverable, we presented validation tests focused on basic functions performed by 
particular entity. The next step is to validate developed modules in integrated scenario with other 
COMET modules. These tests will be performed in integration testbed and reported in forthcoming 
deliverable “D5.1 – Integration of COMET Prototype and Adaptation of Applications”. 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1        Page 45 of 56 
© Copyright 2010, the Members of the COMET 

 

8 References 

[1] COMET Deliverable, “D2.2: “High-Level Architecture of the COMET System”, January 2011 

[2] COMET Deliverable, “D4.2: Final Specification of Mechanisms, Protocols and Algorithms for 
Enhanced Network Platforms”, December 14th, 2011. 

[3] COMET Deliverable, “D3.3: Prototype Implementation and System Integration Interfaces for 
the Content Mediation System” January 2012 

[4] COMET Deliverable, “D3.2: Final Specification of Mechanisms, Protocols and Algorithms for 
the Content Mediation System”, November 2011. 

 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 46 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

9 Abbreviations 

AS   Autonomous System 

BW   Bandwidth 

CAFE   Content Aware Forwarding Entity 

CC   Content Client 

CME   Content Mediation Entity 

CP   Content Publisher 

CRE   Content Resolution Entity 

CRME   Content Resolution and Mediation Entity  

CS   Content Server 

DB   Database 

DNS   Domain Name System 

HS   Handle System 

IP   Internet Protocol 

IPLR   IP Packet Loss Ratio 

IPTD   IP Packet Transfer Delay 

NLRI   Network Layer Reachability Information 

RAE   Routing Awareness Entity 

QoS   Quality of Service 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1        Page 47 of 56 
© Copyright 2010, the Members of the COMET 

 

10 Acknowledgements 

This deliverable was made possible due to the large and open help of the WP4 team of the COMET 
project within this STREP, which includes besides the deliverable authors as indicated in the 
document control. Many thanks to all of them. 
 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 48 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

11  Appendix A: Exemplary configuration file for RAE 

11.1 Overview 

Configuration for RAE is stored in binary format. In order to prepare binary configuration file one 
can use a script prepared in the Python language. Below we show how to prepare this script file for 
an exemplary domain depicted on following figure. 

AS #11
Access Network
10.203.1.0/24

Access Network
10.203.2.0/24

Border Router
to AS #5

Border Router
to AS #9

RAE #11
10.203.3.1:10001

AS #5

RAE #5
10.5.3.1:10001

AS #9

RAE #9
10.9.3.1:10001

RAE session

RAE session

 

 

11.2 Script example 

The script should be located in the main RAE folder, e.g., /opt/comet/rae. Otherwise, one should 
adapt the sys.path.append() method call. 

#!/usr/bin/python 
import sys 
sys.path.append("build/resources") 
import config_pb2 
cm = config_pb2.ConfigurationMessage() 
 

#Limit for the number of paths maintained for a single destination prefix. 

cm.limit_of_preferred_paths = 3 
 
#Configure information about local AS 

cm.local_as_number = 11 
cm.local_ip_address = "10.203.3.1" 
cm.local_port_number = 10001 
 

#Limit for the intensity of the UPDATE messages exchanged between RAEs 

cm.minimum_update_interval = 15 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1        Page 49 of 56 
© Copyright 2010, the Members of the COMET 

 

#Provide the listening port of the CME 

cm.cme_ip_address = "10.203.3.1" 
cm.cme_port_number = 9090 
 

# Define parameters of path ranking algorithm 

# use 'multiplicative inverse' function for decision process 

cm.decision_with_flat_function = 0 
 

# create QoS targets for class 1 (BTBE) 

dp = cm.decision_parameters.add() 
dp.id = 1 
dp.delay_aspiration = 0.5 
dp.delay_reservation = 1.0 
dp.loss_aspiration = 1e-5 
dp.loss_reservation = 1e-3 
dp.bandwidth_aspiration = 4e6 
dp.bandwidth_reservation = 1e6 
 

# create QoS targets for class 2 (PR) 

dp = cm.decision_parameters.add() 
dp.id = 2 
dp.delay_aspiration = 0.15 
dp.delay_reservation = 0.4 
dp.loss_aspiration = 1e-6 
dp.loss_reservation = 1e-4 
dp.bandwidth_aspiration = 10e6 
dp.bandwidth_reservation = 4e6 
 

#Create peering to AS #5 

peer = cm.peer_table.add() 
peer.remote_as_number = 5 
peer.remote_ip_address = "10.5.3.1" 
peer.remote_port_number = 10001 
 

#Set the TTL value that will allow to send IP packets to RAE in AS #5. It should be the minimum 
#value allowing for correct operations. 

peer.ttl_value = 3 

#Describe QoS parameters on the link towards the AS #5 (2 classes). 

c = peer.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
c = peer.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 5e-6 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 50 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

c.metric.maximum_delay = 0.005 
c.metric.supported_bandwidth = 10e6 
 

#Create peering to AS #9 

peer = cm.peer_table.add() 
peer.remote_as_number = 5 
peer.remote_ip_address = "10.9.3.1" 
peer.remote_port_number = 10001 
 

#Set the TTL value that will allow to send IP packets to RAE in AS #9. It should be the minimum 
#value allowing for correct operations. 

peer.ttl_value = 4 

#Describe QoS parameters on the link towards the AS #9 (2 classes). 

c = peer.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 2e-6 
c.metric.maximum_delay = 0.002 
c.metric.supported_bandwidth = 10e6 
c = peer.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 4e-6 
c.metric.maximum_delay = 0.010 
c.metric.supported_bandwidth = 10e6 
 

#Create prefixes for access networks: 10.203.1.0/24 and 10.203.2.0/24. 

prefix = cm.prefix_table.add() 
prefix.ip_address = "10.203.1.0" 
prefix.prefix_length = 24 
prefix = cm.prefix_table.add() 
prefix.ip_address = "10.203.2.0" 
prefix.prefix_length = 24 
 

#Provide provisioning information about the intra-domain part: from prefix 10.203.1.0/24 to 
#10.203.2.0/24 prefix (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.prefix.ip_address = "10.203.1.0" 
prov.source.prefix.prefix_length = 24 
prov.sink.prefix.ip_address = "10.203.2.0" 
prov.sink.prefix.prefix_length = 24 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1        Page 51 of 56 
© Copyright 2010, the Members of the COMET 

 

c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from prefix 10.203.1.0/24 to 
#border router leading to AS #5 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.prefix.ip_address = "10.203.1.0" 
prov.source.prefix.prefix_length = 24 
prov.sink.as_number = 5 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from prefix 10.203.1.0/24 to 
#border router leading to AS #9 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.prefix.ip_address = "10.203.1.0" 
prov.source.prefix.prefix_length = 24 
prov.sink.as_number = 9 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from prefix 10.203.2.0/24 to 
#10.203.1.0/24 prefix (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.prefix.ip_address = "10.203.2.0" 
prov.source.prefix.prefix_length = 24 
prov.sink.prefix.ip_address = "10.203.1.0" 
prov.sink.prefix.prefix_length = 24 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 2e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 52 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 2e-6 
c.metric.maximum_delay = 0.002 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from prefix 10.203.2.0/24 to 
#border router leading to AS #5 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.prefix.ip_address = "10.203.2.0" 
prov.source.prefix.prefix_length = 24 
prov.sink.as_number = 5 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from prefix 10.203.2.0/24 to 
#border router leading to AS #9 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.prefix.ip_address = "10.203.2.0" 
prov.source.prefix.prefix_length = 24 
prov.sink.as_number = 9 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from border router connecting AS 
#5 to prefix 10.203.1.0/24 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.as_number = 5 
prov.sink.prefix.ip_address = "10.203.1.0" 
prov.sink.prefix.prefix_length = 24 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1        Page 53 of 56 
© Copyright 2010, the Members of the COMET 

 

c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from border router connecting AS 
#5 to prefix 10.203.2.0/24 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.as_number = 5 
prov.sink.prefix.ip_address = "10.203.2.0" 
prov.sink.prefix.prefix_length = 24 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from border router connecting AS 
#5 to border router leading to AS #9 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.as_number = 5 
prov.sink.as_number = 9 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from border router connecting AS 
#9 to prefix 10.203.1.0/24 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.as_number = 9 
prov.sink.prefix.ip_address = "10.203.1.0" 
prov.sink.prefix.prefix_length = 24 
c = prov.class_table.add() 
c.cos_id = 1 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 54 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from border router connecting AS 
#9 to prefix 10.203.2.0/24 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.as_number = 9 
prov.sink.prefix.ip_address = "10.203.2.0" 
prov.sink.prefix.prefix_length = 24 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

#Provide provisioning information about the intra-domain part: from border router connecting AS 
#9 to border router leading to AS #5 (2 classes). 

prov = cm.provisioning_table.add() 
prov.source.as_number = 9 
prov.sink.as_number = 5 
c = prov.class_table.add() 
c.cos_id = 1 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.0005 
c.metric.supported_bandwidth = 10e6 
c = prov.class_table.add() 
c.cos_id = 2 
c.metric.loss_ratio = 1e-6 
c.metric.maximum_delay = 0.001 
c.metric.supported_bandwidth = 10e6 
 

 

Finally, save the file! 

open("rae11.conf.pb2", "wb").write(cm.SerializeToString()) 

11.3 Prepare log4cxx.conf file 

Create a file with following contents: 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Version 1.1        Page 55 of 56 
© Copyright 2010, the Members of the COMET 

 

log4j.rootLogger=INFO, A1 

log4j.appender.A1=org.apache.log4j.ConsoleAppender 

log4j.appender.A1.layout=org.apache.log4j.PatternLayout 

log4j.appender.A1.layout.ConversionPattern=%d %-5p [%c] %m%n 

11.4 Starting the RAE 

Type the following in the command line console to start the RAE. 

./build/rae rae11.conf.pb2 



Seventh Framework STREP No. 248784  D4.3 Prototype Implementation and System Integration... 
Commercial in Confidence 

 

Page 56 of 56  Version 1.1 
© Copyright 2010, the Members of the COMET Consortium 

 

12 Appendix B: CAFE agent test script 

import socket 
import sys 
import cmecafe_pb2 
HOST, PORT = "10.2.0.10", 9999 

# Create a socket (SOCK_STREAM means a TCP socket) 
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
try: 
    # Connect to server 
    sock.connect((HOST, PORT)) 
  

   # Collect streams 
    m = cmecafe_pb2.GenericRequest() 
    m.type = cmecafe_pb2.GenericRequest.COLLECT_EXPIRED_STREAMS 
    length = m.ByteSize() 
    assert(length < (1 << 16)) 
    sock.send(''.join([chr(length >> 8), chr(length & 0xff)])) 
    sock.send(m.SerializeToString()) 

    # Receive response 
    t = sock.recv(2) 
    length = ord(t[0]) << 8 | ord(t[1]) 
    t = sock.recv(length) 
    r = cmecafe_pb2.GenericResponse.FromString(t) 
    print("Received:") 
    print(str(r)) 

    # Send configure stream 
    for i in range(1,10): 
        m = cmecafe_pb2.GenericRequest() 
        m.type = cmecafe_pb2.GenericRequest.CONFIGURE_STREAM 
        m.configure.id = i 
        m.configure.filter.ip_source = "1.1.1.1" 
        m.configure.filter.ip_destination = "2.2.2.2" 
        m.configure.filter.protocol = 6 
        m.configure.filter.port_source = 80 
        m.configure.filter.port_destination = 0 
        m.configure.bandwidth = 1000 
        m.configure.cos = "PR" 
        m.configure.key = "\x01\x02{0:c}".format(i & 0xff) 
        m.configure.refresh_time = 10 
        m.configure.as_path.extend([1,2,3]) 
        length = m.ByteSize() 
        assert(length < (1 << 16)) 
        sock.send(''.join([chr(length >> 8), chr(length & 0xff)])) 
        sock.send(m.SerializeToString()) 

        # receive response 
        t = sock.recv(2) 
        length = ord(t[0]) << 8 | ord(t[1]) 
        t = sock.recv(length) 
        r = cmecafe_pb2.GenericResponse.FromString(t) 
        print("Received:") 
        print(str(r)) 


